Transcellular transport as a mechanism of blood-brain barrier disruption during stroke.

نویسندگان

  • Marilyn J Cipolla
  • Ryan Crete
  • Lisa Vitullo
  • Robert D Rix
چکیده

It is well-known that ischemia causes disruption of the blood-brain barrier (BBB), which leads to the formation of vasogenic brain edema. One major mechanism of BBB opening is enhanced pinocytotic vesicle formation that may be induced after transient focal ischemia by several mechanisms, including nitric oxide production, release of neurotransmitters, inflammatory mediators and hemodynamic alterations. In the present study we sought to characterize the extent of pinocytosis in cerebral endothelium during both ischemia/reperfusion (I/R) and elevated intravascular pressure. Transient focal ischemia was induced for 1 hour with 24 hours of reperfusion using the filament occlusion model in male Wistar rats, after which occluded middle cerebral arteries (MCAs) were dissected and mounted on glass cannulas in an arteriograph chamber. This system allowed control over intravascular pressure, measurement of lumen diameter and perfusion with various tracers (Lucifer Yellow and horseradish peroxidase) for measurement of transcellular transport and quantification of pinocytosis using transmission electron microscopy. I/R was found to increase vesicle formation by 166% basolaterally without a change in vesicle formation apically compared to non-ischemic control MCAs at 75 mmHg (p less than 0.01). Similarly, an acute increase in pressure to 200 mmHg caused a 78% increase in apical pinocytosis (p less than 0.05) and a non-significant 42% increase basolaterally. These results were confirmed by permeability measurements using Lucifer Yellow and demonstrate that both I/R and acute elevations in intravascular pressure enhance cerebral endothelial cell pinocytosis. The increase in basolateral pinocytosis during ischemia suggests enhanced efflux mechanisms that may be transporting substances from brain to blood. In addition, since the enhanced pinocytosis after an increase in pressure occurred in isolated arteries in vitro without the influence of metabolic or neuronal factors, these findings demonstrate that elevated intravascular pressure is a primary stimulus for pinocytosis in cerebral endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Disruption of embryonic blood-CSF barrier in chick embryos reveals the actual importance of this barrier to control E-CSF composition and homeostasis in early brain development

In vertebrates, early brain development takes place at the expanded anterior end of the neural tube. After closure of the anterior neuropore, the brain wall forms a physiologically sealed cavity that encloses embryonic cerebrospinal fluid (E-CSF), a complex and protein-rich fluid that is initially composed of trapped amniotic fluid. E-CSF has several crucial roles in brain anlagen development. ...

متن کامل

Intensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion

Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...

متن کامل

Stepwise Recruitment of Transcellular and Paracellular Pathways Underlies Blood-Brain Barrier Breakdown in Stroke

Brain endothelial cells form a paracellular and transcellular barrier to many blood-borne solutes via tight junctions (TJs) and scarce endocytotic vesicles. The blood-brain barrier (BBB) plays a pivotal role in the healthy and diseased CNS. BBB damage after ischemic stroke contributes to increased mortality, yet the contributions of paracellular and transcellular mechanisms to this process in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2004